Viết phương trình đường tròn đi qua 2 điểm và tiếp xúc với đường thẳng

Phương trình đường tròn tiếp xúc với đường thẳng

Phương trình đường tròn tiếp xúc với đường thẳng là phần kiến thức vô cùng quan trọng trong chương trình Toán Phổ thông. Nắm vững phần kiến thức này, các em sẽ dễ dàng giải các bài Toán liên quan. Chính vì lẽ đó, hôm nay PUD sẽ giới thiệu cùng các bạn chi tiết hơn về chuyên đề này. Cùng chia sẻ bạn nhé !

Phương trình đường tròn tiếp xúc với 1 đường thẳng

Dạng 1: Đường tròn (C) có tâm I và tiếp xúc với đường thẳng (Delta)

Khi đó bán kính (R = d (I, Delta ))

Ví dụ 1: Lập phương trình đường tròn (C) có tâm I(-1,2) tiếp xúc với đường thẳng (Delta) x – 2y + 7 = 0

Giải: Ta có (d(I,Delta)=frac{|-1-4-7|}{sqrt{5}})

Phương trình đường tròn (C) có dạng ((x+1)^2+(y-2)^2=frac{4}{5})


Bạn đang xem: Viết phương trình đường tròn đi qua 2 điểm và tiếp xúc với đường thẳng

*

Xem thêm: Nêu Những Nguyên Nhân Dẫn Đến Các Làn Sóng Di Dân Ở Đới Nóng ?

Dạng 2: Đường tròn (C) đi qua hai điểm A, B và tiếp xúc với đường thẳng (Delta)

Viết phương trình đường trung trực d của đoạn AB Tâm I của (C) thỏa mãn (left{begin{matrix} I epsilon d & d(I, Delta ) = IA & end{matrix}right.)Bán kính R = IA

Ví dụ 2: Cho điểm A(-1;0), B(1;2) và đường thẳng (d): x – y – 1 = 0. Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng d.Bạn đang xem: Viết phương trình đường tròn đi qua 2 điểm và tiếp xúc với đường thẳng

Giải: Gọi I(x,y) là tâm của đường tròn cần tìm. Từ điều kiện đề bài ta có:

IA = IB = r (Leftrightarrow) ((x+1)^2+y^2= (x-1)^2+(y-2)^2) (1)

IA = d(I,d) (Leftrightarrow) (sqrt{(x+1)^2+y^2}=frac{|x-1-y|}{sqrt{2}}) (2)

Giải hệ gồm 2 phương trình (1) và (2) ta được x = 0, y = 1

Vậy I(0,1) IA = r = (sqrt{2})

Phương trình đường tròn (C) có dạng (x^2+(y-1)^2 = 2)

Dạng 3: Đường tròn (C) đi qua điểm A và tiếp xúc với đường thẳng (Delta) tại điểm B.

Viết phương trình đường trung trực d của đoạn ABViết phương trình đường thẳng (Delta ‘) đi qua B và (perp Delta)Xác định tâm I là giao điểm của d và (Delta ‘) Bán kính R = IA

Ví dụ 3: Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A(6,0) và đi qua điểm B(9,9)

Giải: Gọi I(a,b) là tâm đường tròn (C)

Vì (C) tiếp xúc với trục hoành tại A(6;0) nên (I epsilon d: x = 6)

Mặt khác B nằm trên đường tròn (C) nên I sẽ nằm trên trung trực của AB

Ta có phương trình trung trực AB: x + 3y – 21 = 0

Thay x = 6 => y = 5 Suy ra ta tìm được tọa độ điểm I(6;5), R = 5

Vậy phương trình đường tròn (C): ((x-6)^{2} + (y – 5)^{2} = 25)

Phương trình đường tròn tiếp xúc với 2 đường thẳng

Dạng 1: Đường tròn (C) đi qua điểm A và tiếp xúc với hai đường thẳng (Delta _{1}, Delta _{2})

Tâm I của (C) thỏa mãn: (left{begin{matrix} d(I,Delta _{1}) = d(I,Delta _{2})& d(I,Delta _{1}) = IA & end{matrix}right.)Bán kính R = IA

Ví dụ 4: Viết phương trình đường tròn tiếp xúc với hai đường thẳng 7x – 7y – 5 = 0 và x + y + 13 = 0. Biết đường tròn tiếp xúc với một trong hai đường thẳng tại M (1,2).

Giải: Gọi I(x,y) là tâm đường tròn cần tìm. Ta có khoảng cách từ I đến 2 tiếp điểm bằng nhau nên (frac{|7x-7y-5|}{sqrt{5}} = frac{left | x + y + 13 right |}{sqrt{1}}) (1)

và (frac{|x+y+13|}{sqrt{2}}=sqrt{(1-x)^2+(2-y)^2}) (2)

Giải hệ gồm 2 phương trình (1) và (2) ta được

TH1: x = 29, y = – 2 => R = IM = (20sqrt{2})

Phương trình đường tròn có dạng ((x-29)^2+(y+2)^2=800)

TH2: x = – 6, y = 3 => R = (5sqrt{2})

Phương trình đường tròn có dạng ((x+6)^2+(y-2)^2=50)


Xem thêm: Sự Khác Nhau Của Bú Sữa Mẹ Trực Tiếp Và Bú Sữa Mẹ Bằng Bình Cho Con Bú?

*

Tâm I của (C) thỏa mãn (left{begin{matrix} d(I,Delta _{1}) = d(I,Delta _{2})& Iepsilon d & end{matrix}right.)

Bán kính (R = d(I,Delta _{1}))

Ví dụ 5: Viết phương trình đường tròn đi qua A(2,-1) và tiếp xúc với hai trục tọa độ

Giải: Gọi I(a,b) là tâm của đường tròn (C)

Do (C) tiếp xúc với 2 trục tọa độ nên I cách đều 2 trục tọa độ. Suy ra: |a| = |b|

Nhận xét: Do đường tròn tiếp xúc với 2 trục tọa độ nên cả hình tròn nằm trong 1 trong 4 góc của hệ trục, lại có A(2, -1) thuộc phần tư thứ IV

=> Tâm I thuộc phần tư thứ IV => a > 0, b

Như vậy tọa độ tâm là I(a, -a), bán kính R = a, với a > 0

Ta có phương trình đường tròn (C) có dạng ((x-a)^2 + (y+a)^2 = a^2)

Do A (-2;1) thuộc đường tròn (C) nên thay tọa độ của A vào phương trình (C) ta được: ((2-a)^2 + (1+a)^2 = a^2)